



# Real-Time Robotic Surveying for Unexplored Arctic Terrain

Lonnie T. Parker
Dr. Ayanna Howard
Human-Automation Systems Laboratory
School of Electrical & Computer Engineering
Georgia Institute of Technology

2010 NASA Earth Science Technology Forum



#### Motivation



## ➤ Objective

- ➤ To make more information available to remote-sensing systems using autonomous or semi-autonomous robotic solutions.
- ➤ Specifically, provide higher-resolution shape and slope characteristics of terrain than currently offered.

## ➤ Strategy

Intelligently collect changes in terrain using robotic technology.



## Motivation



➤ The limitation of the pixel footprint...





## Motivation: EOS



## ➤ An Earth Observing System needs:

- ➤ Satellite capable of orbiting the earth
- Multiband, high-powered radiometer (spectroradiometer)
- Complex signal processing algorithms for imaging

#### ➤ Available resources:

- ➤ Multiple scene perspectives
  - ➤ Globally (ex situ): Landsat, ICESat, MODIS
  - Locally (in situ): Automatic Weather Stations (AWS), human field campaigns, aerial fly-bys



## Motivation: In situ tools



- > We have several options for in situ data collection.
  - > Automatic Weather Stations
    - ➤ Coverage
  - > Aerial campaigns
    - **≻**Cost
  - > Human field campaigns
    - ➤ Safety
- > Robotic alternative
  - > Mobile
  - > Cheap
  - > Expendable









# Motivation: Augmentation







# Surveying: History



#### Multitude of survey types

- Land, Route, City/Municipal, topographic, construction, hydrographic, mining, forestry...
- ➤ Topographic surveys "are made for locating objects & measuring the relief, roughness, or three-dimensional variations of the Earth's surface." (Surveying, 2<sup>nd</sup> ed., J. C. McCormac)
- Traditional requirements
  - ➤ 2 3 person team: Observer, Rodman, Eyeman (optional)
  - Distance measuring equipment (i.e. EDM, GPS, tape measure, levels, leveling rod)
  - Multiple elevation measurements



Images acquired from Google Images

Observer

Rodman



# Surveying: Currently



- Few explicit limitations exist, but there is a balance between equipment and man power.
- ➤ Total Stations cost between \$7K and \$40k depending on available features and age.
- ➤ AutoCAD (w/ Civil3D package), and Land Development are used to generate contour maps based on imported data from surveyors.





# Surveying



- Defining in's and out's of surveying
  - Contacted surveyor companies to interview about modern surveying methods
    - ➤ Boundary Zone Inc.
  - ➤ Key issues: *Measurement location selection* and *curvature*
  - >Control Point Vs Checkerboard Method
  - Curvature is defined via estimating contours
    - ➤ Less control points ← → Less information available
  - ➤ More information is better...even if the customer (i.e. scientist) doesn't realize it...



# Surveying: Robotics



- ➤ Additional theoretical work was done by others including R. R. Hashemi (*U. Arkansas*) and E. Tunstel (*APL*, *Johns Hopkins U.*)
- ➤ Originally developed ideas for locating items in a 2D search space (i.e. water, Martian gases, etc.)
  - $\triangleright$  Focus on maximizing Quality of Performance, QoP = (A<sub>s</sub> / D<sub>s</sub>)

#### **Single Agent**



Strip Approach



Tube Approach June 22<sup>nd</sup>, 2010

#### **Dual Agent**



Improved Strip Approach



Relaxed Improved Strip Approach 2010 NASA ESTF



# Surveying: Robotics



➤ Emphasis of previous work is on which navigation pattern minimizes distance over an area, A.



Here, a single-agent executing a "lawnmower" pattern achieves the highest QoP, yet these patterns can be adjusted to suit the application



## Surveying: Robotics



- Previous work has included applications for...
  - Pseudo-Martian planetary exploration (via simulated environments)
  - ➤ Agricultural and farming products



Autonomous Crop Treatment Vehicle (Tillett and Hague Technology Ltd)



K10 Planetary Rovers (NASA)

➤ While useful, their mission objectives varied, none of which included terrain characterization.

<sup>\*</sup>Images acquired from <a href="http://lunarscience.nasa.gov/roboticrecon/robotic-tech/k10-robot-fast-facts">http://www.unibots.com/Agricultural Robotics Portal.htm</a>





Combine land surveying principles and coverage algorithms to create a robotic survey system.





Images acquired from Google Images

June 22<sup>nd</sup>, 2010

2010 NASA ESTF



## Approach



- Claim: If surveyors base control point selection on changes in terrain elevation, robots should do the same, but do so more intelligently.
- Presume we know...
  - ➤ A measurement of the maximum height and minimum depth of a terrain.
  - > We only survey areas exhibiting a range of angular orientations.

$$ho_{min} < Pitch_{Terrain} < \theta_{max}$$
  
 $ho_{min} < Roll_{Terrain} < \phi_{max}$ 

- ➤ GPS is available so as to assign sensed information with a sufficiently known location.
- > Problems that this research can address:
  - ➤ Obtaining a more accurate measurement of curvature.
  - ➤ Developing a specific approach to increase information gain in lieu of manually increasing the number of measurements.



# Approach







## Approach



#### DemMaker in MATLAB

- ➤ Useful for simulating desired "pixel" size (~250x250 m² areas).
- ➤ Both "roughness" as well as specific terrain aberrations can be simulated (i.e. hills or craters).
- ➤ Maps are easily imported into 3D Gazebo world environment.





June 22<sup>nd</sup>, 2010 2010



2010 NASA ESTF





## ➤ Computer graphics

➤ Physics-based approach to surface reconstruction using multiple finite element methods.







Figure 5: (a) Original digital terrain map. (b) Rendered contour data. (c) Reconstructed terrain.





- > Field tests in Piedmont Park, Atlanta, GA
- Area Under Test was selected
  - > 20 [m] x 40 [m]
  - ➤ Low undulating terrain
  - ➤ Obstacle-free
  - ➤ Elevation reference of 880 [ft]
  - Steadily increasing slope











- > 2D contour comparison
  - ➤ Taking contours of the regenerated data, then visually compared to the online map data shows a close comparison of 12-14 [ft] in elevation differential from the reference.
- ➤ Results presented at AIAA Infotech@Aerospace 2010, Atlanta, GA.









- ➤ 3D Terrain Regeneration
  - ➤ Following filtering and post-processing, we recreated the AUT at 1[m] and 2[m] resolutions.







#### ➤ Albedo measurement...



Courtesy of Crystal Schaaf (http://www-modis.bu.edu/brdf/userguide/intro.html)





#### ➤ Albedo measurement...



Courtesy of Crystal Schaaf (http://www-modis.bu.edu/brdf/userguide/intro.html)



# **SnoMote Project**



- ➤ Previous arctic robotics projects involve developing a single large expensive robot.
  - ➤ CoolRobot (Dartmouth)
  - ➤ Nomad (CMU)
  - ➤ MARVIN (U. of Kansas)
- ➤ Multi-agent systems require the development of potentially dozens of agents.
  - ➤ Inexpensive design
  - Consumer-grade sensing
  - ➤ Agent loss is tolerated
- ➤ Agents must still have significant terrain traversing capabilities.



# **SnoMote Project**







## **SnoMote Project**



#### > The SnoMotes

- Inspired by a snowmobile design.
- ➤ Includes on-board sensors (vision, humidity, temperature, pressure, and **tilt**) and real-time processing.
- Field-tested in Juneau, AK on Mendenhall and Lemon Creek glaciers in June 2009.





# Observations: Decadal Survey



#### > Relevant projects

- ➤ Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)
  - ➤ To record the response of ice sheets to climate change.
- Gravity Recovery and Climate Experiment (GRACE-II)
  - ➤ Spacio-temporal fluctuations of the Earth's mass distribution.
- ➤ Ice, Cloud, and land Elevation Satellite (ICESat-II)
  - ➤ Altimetry measurements to determine the contribution of terrestrial ice cover to global sea levels.
- ➤ All benefit from increased bandwidth of information afforded by robotic technology.



## Observations



#### >Aim

- ➤ Not to replace current capabilities, but to augment them.
- Increase knowledge base of scientific information currently available.
- Improve efficiency and safety of earth scientists.



### References



- Center for Remote Sensing, Boston University
- Larsen, C., Motyka, R., Arendt, A., Echelmeyer, K., and Geissler, P., "Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise," *Journal of Geophysical Research*, Vol. 112, 2007.
- Roujean, J. L., "A Bidirectional Reflectance Model of the Earth's Surface for the Correction of Remote Sensing Data," *Journal of Geophysical Research*, Vol. 97, 1992, pp. 20,455 20,468.
- Lucht, W., Schaaf, C. B., and Strahler, A. H., "An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models," *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 38, 2000, pp. 977 996.
- Wanner, W., Li, X., and Strahler, A. H., "On the derivation of kernels for kernel-driven models of bidirectional reflectance," *Journal of Geophysical Research*, Vol. 100, 1995, pp. 21,077 21,089.
- Coll, C., Caselles, V., Galve, J., Valor, E., Niclos, R., Sanchez, J., and Rivas, R., "Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data," *Remote Sensing of Environment*, Vol. 97, No. 3, 2005, pp. 288–300.
- J. Stroeve, J. E. Box, F. Gao, S. Liang, A. Nolan, C. Schaaf, "Accuracy Assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements", Remote Sensing of Environment, 94, 46-60, 2005
- V. B. Spikes, G. S. Hamilton, "GLAS calibration-validation sites established in West Antarctica," 30<sup>th</sup> International Symposium of Remote Sensing of the Environment (submitted), Nov. 2003
- Website: <a href="http://www-modis.bu.edu/brdf/product.html">http://www-modis.bu.edu/brdf/product.html</a>
- > PPT: MODIS BRDF/Albedo Products from Terra and Aqua, BU, Dept. of Geography



## References cont...



- McCormac, J. C., Surveying, Prentice-Hall, 1985.
- Whyte, W. S. and Paul, R. E., Basic Metric Surveying, Butterworth and Company, 1985.
- Anderson, M. O., Kinoshita, R. A., McKay, M. D., Willis, W. D., Gunderson, R. W., and Flann, N. S., "Mobile Robotic Teams Applied to
- Precision Agriculture," 8th International Topical Meeting on Robotics and Remote Systems, Idaho Falls, ID, 1999.
- Fong, T., Allan, M., Bouyssounouse, X., Bualat, M. G., Deans, M. C., Edwards, L., Fluckiger, L., Keely, L., Lee, S. Y., Lees, D., To, V., and Utz, H., "Robotic Site Survey at Haughton Crater," 9th Int. Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, CA, 2008.
- Fong, T. W., Bualat, M., Edwards, L., Flueckiger, L., Kunz, C., Lee, S. Y., Park, E., To, V., Utz, H., Ackner, N., Armstrong-Crews, N., and Gannon, J., "Human-Robot Site Survey and Sampling for Space Exploration," *AIAA Space 2006*, September 2006.
- Tunstel, E., Anderson, G. T., and Wilson, E. E., "Autonomous Mobile Surveying for Science Rovers using In Situ Distributed Remote Sensing," *IEEE Int. Conference on Systems, Man, and Cybernetics*, Pasedena, CA, 2007.
- Tunstel, E., Dolan, J., Fong, T. W., and Schreckenghost, D., "Mobile Robotic Surveying Performance for Planetary Surface Site Characterization," *Performance Evaluation and Benchmarking of Intelligent* Systems, edited by E. Tunstel and E. Messina, Springer, August 2009.
- Hashemi, R. R., Jin, L., Anderson, G. T., Wilson, E., and Clark, M. R., "A Comparison of Search Patterns for Cooperative Robots Operating in Remote Environment," *IEEE Int. Conference on Information Technology: Coding and Computing*, Las Vegas, NV, 2001.
- Hashemi, R. R., Jin, L., Jones, S., Owens, D., and Anderson, G., "A Rule-Based System for Localization of Water on the Surface of Mars," *IEEE Int. Conference on Information Technology: Coding and Computing*, Las Vegas, NV, 2001.
- Williams, S., Parker, L. T., and Howard, A. M., "Calibration and Validation of Earth-Observing Sensors using Deployable Surface-Based Sensor Networks," *IEEE Journal of Selected Topics in Earth Observations and Remote Sensing*, 2009.



## Thank you...



- ➤ NASA ESTO, Applied Information Systems Technology Program
- ➤ Science, Mathematics and Research for Transformation (SMART) Fellowship
- ➤ Stephen Williams, Georgia Tech



